
GRS2: A Scalable Distributed
Search Engine
Ransford Antwi, Shashank Prasad, Garvit Khandelwal and Shruti Sinha

G13, University of Pennsylvania, CIS555 Professor: Andreas Haeberlen

May 11, 2020

T he purpose of this project is to build a fully
scalable and distributed search engine. The
major components of the search engine in-

clude Crawler, Indexer/TF-IDF Retrieval Engine,
PageRank, Search Engine and User Interface

1 Introduction

1.1 Approach

We designed and implemented a distributed search
engine adopting Mercator style crawler to implement
efficient crawling, used Stormlite framework for index-
ing, Apache Hadoop framework for PageRank and a
clean, quick and high quality user interface for the
search engine alongwith some interesting extra fea-
tures.

1.2 Division of Labour

• Garvit Khandelwal : Indexer Stormlite(HW3)
and EMR

• Ransford Antwi : Crawler, Crawler EC
• Shashank Prasad : Search Engine, User Interface,

EC API-Frontend, EC Cache
• Shruti Sinha : PageRank, EC API Backend, EMR

Indexer

1.3 Project Timeline

• 04/24 - Basic Interfaces
• 04/29 - Basic Crawler/Indexer/PageRank
• 05/06 - Indexer and PageRank integration with

Search Engine
• 05/10 - Search engine rank tuning and Extra

credit

2 Architecture

2.1 High level System Overview

The overall system architecture is shown in Figure 1

2.2 Crawler

The design of the crawler borrows heavily from the
Mercator design. The crawler was designed for max-
imum efficiency in terms of throughput, whilst also
respecting crawl delays and other admin specified be-
haviour within the robots.txt of websites. Building a
distributed crawler comes with certain challenges that
are not present on a single node crawler. To make the
crawler as robust as possible, we periodically save the
majority of the crawler state on disk so that in the event
that it does crash, it can easily resume from where it
left off. This feature helped save a lot of time. The
URLFrontier was designed to be as polite as possible
without sacrificing throughput. We implemented a pri-
ority based frontier with 3 different priority levels. The
higher the priority of a host name, the more consecu-
tive URLS from that host name can be crawled. The
URLFrontier buffers at most a 1000 URLS in memory
and the rest are stored on disk. The crawler was built
using the StormLite framework which is a miniature
version of Apache Storm for stream processing. The
architecture for a single worker node is shown in Fig-
ure 2. We used BerkeleyDB to handle the database
transactions.
The overall crawling process was as follows :
1. Dequeue URL: The URLSpout dequeues a URL from
the frontier and emits it to the Crawler Bolt. If the
frontier is empty, it refills with a 1000 URLS from disk
2. Crawler Bolt: The crawler bolt first checks the
robots.txt associated with the given host. If we are
allowed to crawl the given url, we then check the crawl
delay and compare with the last time this host was
crawled. If the delay has not expired yet, the URL
is added back to the queue, else we proceed. Next
step is to check whether we already have a document
pertaining to this url in our DB. If we do, we send
a head request with an If-Modified-Since Header to
determine whether the document has changed else we
send a regular HEAD request. If the document has not
changed we forward it to the document parser bolt,
else we send a GET request to download the page and
forward the url and document to the document parser
bolt.



GRS2: A Scalable Distributed Search Engine

Figure 1: System Architecture

Figure 2: Crawler Architecture

3. Document Parser Bolt: This extracts links within
each html document as well as performs the content
seen test via MD5 hashing of each html page. It the
forwards all the links extracted to the host splitter bolt.
4. Host Splitter Bolt: Forwards URLs to the respective
worker nodes based on a hash of the hostname modulo
the number of workers. It forwards the URLs to the
workers’ URLFilter Bolt.
4. URL Filter Bolt Bolt: Filters the URLs based on
depth, length and other user specified filters such as
banned hosts. URLS that pass the filter are then written
to the URL disk.

2.2.1 Distributed Crawler

For the distributed component, we implemented a mas-
ter worker architecture similar to the one in Merca-
tor. The space of host names is partitioned across the
worker nodes. The master node is responsible for send-
ing the worker table to each worker node, and the
worker node forwards URLs that are meant to be han-
dled by a different node to that worker node’s host split-
ter bolt. The host splitter bolt then forwards URLS to
the URLFilter. We also implemented a content seen test
by hashing the content of documents passed into the

document filter bolt, this is to ensure we don’t down-
load the same content multiple times under different
URLs. Another extra feature we implemented was the
dynamic addition of worker nodes. For a worker node
to start, it sends a status update to the master node
which then sends a send job signal to the worker node.
When the master node receives a worker status update
from a new node, it recalculates the worker table and
sends the updated worker table to all worker nodes.
The workers use the worker table to partition the space
of host names and forwards host names to relevant
workers via the host splitter bolt. Workers send a sta-
tus update to the master node every 10 seconds. This
is all shown on the master screen, an example is shown
in Figure 6

2.3 Indexer

The indexer comprises of Map Reduce jobs which were
implemented on EMR and on HW3 framework using
Stormlite(Extra Credit). For both the implementa-
tions, the mapper and reducer had the same job. The
input data comes from the crawled data saved in S3
bucket and the indexing was divided in two sequential
jobs (Job1 and Job2) to calculate the inverted index,
TF/IDF scores and hit list which contain the normalized
position of the word in the document.
TF and Hit List Calculation: The key to Job1 is URL and
the value is the HTML content of the page. The mapper
then parses the content and removes the unwanted
tags to just get the raw body and title out of the HTML.
The words were then filtered to remove stop words
for English language and then were stemmed using
Porter Stemmer. The mapping also accounted for
removal of any special characters except characters
and numbers. Using the lexicon of English words, the
term frequency of that word(tf) in that document
and hist list(hit_list) comprising of normalized term
location was calculated by dividing the index(i) at

Page 2 of 6



GRS2: A Scalable Distributed Search Engine

Figure 3: crawler master node screen

which the term appears and total number of words
in that document(W).The output for Job1 reducer
had word, its URL, TF score and the normalized term
location.

IDF and Score Calculation: The mapper of Job2 split
the word from the intermediate result from Job1 and
passed the word as the key and its URL, TF and hit list
score to the reducer. The reducer then accumulated
all the URLs(n) per word and calculated inverse docu-
ment frequency(idf) using total number of URLs(N).
Using the TF(tf) and IDF(idf) scores, the final reducer
emitted inverted index for each word and the list of
URLs it occurred in and its score(tf_idf) and hit list
in form of the data structure: <Word, <URL, TF/IDF
score, HitList score».

hitlist = i/W (1)

tf = 0.5 + 0.5 ∗ ft, d

max{ft′d : t′ ∈ d}
(2)

idf = log
N

n
(3)

score = tf_idf = tf ∗ idf (4)

The results were stored differently for EMR and
Stormlite.
• EMR: The input to indexer comes from S3 as URL

and its content and the final results were also
stored in S3 bucket on AWS. The results were then
pulled from S3 using a master-workers framework
where the master reads the data from S3 and cal-
culates hash for each word in lexicon and spilt
it across each worker depending on number of
workers attached to master keeping the solution
scalable. The workers then store the final results
in Berkeley DB and was then made available to
search engine.

• Stormlite: The Spout in Stormlite framework gets
data from S3 bucket and emit one URL and its
contents using shuffle framework to mappers and
then to reducers bolts. Then the reducers finally
use field based grouping to calculate hash based
on number of workers in the system and route
the final data to final bolt which saves the data in
local Berkeley DB. Once the indexer finishes, the
data is available for search engine to query.

2.4 PageRank

The pagerank module is invoked after we have a com-
plete crawler corpus in S3. We used the Google paper
on PageRank as our base reference. It has been im-
plemented using the Hadoop Mapreduce framework
and is run on Amazon’s Elastic Map Reduce to reduce
execution time and boost efficiency of our program
with respect to the HW3 framework. It consists of 6
sequential jobs which is run by a driver class.
1. Extract Link MapReduce: This job reads the corpus
from the S3 crawler bucket and creates a mapping for
each page to its outlinks which basically created a web
graph for that page.
2. Dangling Link MapReduce: For each page it identifies
those outlinks that are dangling i.e uncrawled pages
without any outlinks of their own.
3. PageRank Initial MapReduce: This assigns an initial
rank of 1 for each page.
4. PageRank Algorithm MapReduce: It is an iterative
job which performs the actual calculation of pageranks
using the formula described in the PageRank paper
by Brin and Page which involves a damping factor d
of 0.85 The formula used to calculate PageRank of a
page A which has pages T1, T2..Tn which point to it is
given as follows:

PR(A) = (1− d) + d(
PR(T1)

C(T1)
+ ...+

PR(Tn)

C(Tn)
)

The results of this algorithm are then fed back to this
job and runs iteratively.
5. Normalise MapReduce: In order to account for sinks
and dangling links, who cause distortions with respect
to the expected ranks, we normalise PageRank values
after each iteration . To normalise we multiply each
page’s rank with a factor, determined by dividing the
initial page rank sum before the iteration with the new
sum of pagerank values after the iteration. This allows
us to redistribute the ranks in the same proportion as
before with fewer distortions.
6. Finalise MapReduce: The last job puts the final clean
ranks as url vs rank from the last iteration into S3.

Page 3 of 6



GRS2: A Scalable Distributed Search Engine

2.4.1 Design Decisions

Our pagerank web graph would consist of urls i.e per
page as an individual vertex as suggested in the Google
paper instead of having a domain per vertex. In ad-
dition, the pagerank module is protocol independent
i.e two pages having the same url but different proto-
cols for eg. http://abc.com and https://abc.com would
have a single entry/vertex in our pagerank web graph.
We also chose not to get rid of self links, since we
wanted to avoid any changes to the original web graph
and therefore used normalization instead.
We used the HW3 framework with SHA-1 hashing

to distribute the pageranks for the corpus stored in S3
to multiple worker servers local Berkeley DB instances.
We decided to use local Berkeley DB instances to save
pageranks and indexed data over RDS and DynamoDB
because it’s pros outweighed the others. DynamoDB
could have proved to be expensive and would not have
been easy to query while RDS would not have been
scalable and would have required distribution from our
end.

2.5 Search Engine

• Back-End The Search engine back-end is responsi-
ble for communicating with both the indexer and
page rank and use their outputs to compute the
top URLs relevant to the query. In our architec-
ture, the indexer and page rank expose a spark
java server with routes registered to query them
for data related to the query. Once the user en-
ters the search query, it is filtered to remove all
the stop words and the filtered words are sent
to the indexer. The indexer sends a back a struc-
ture with a collection of urls for each word along
with their TF/IDF and position scores. From the
indexer payload, we extract all the urls and sent
them to the pagerank to get the page rank score
for each URL. Once the respective payloads are
obtained a local cluster with a url spout, a scorer
bolt and enqueue bolt is started. The url spout
emits urls to the scorer bolt which computes the
score for each url and emits the (url,score) value
pair to the enqueue bolt. The enqueue bolt en-
queue to a priority queue based on the score. The
priority queue is used to get the results to the user
interface.

• Front-End The front-end exposes a spark java
server for browsers to supply the query string.
Once the query string is received it issues this to
the back-end and uses the priority queue gener-
ated to generate construct a HTML page back to
the user

3 Ranking

The ranking function requires the following inputs for
a search query
• TF/IDF scores for word in the query string for each

url
• Position score/ Hit List for word in query string

for each url
• Page Rank Score for each url
• Word frequency in the query string

Algorithm 1: Ranking algorithm
Result: Computed scores for Top 100 URLs
Get TF/IDF scores from the indexer
Get HitList scores from the indexer
Get PageRank scores from the index
Calculate the word frequency in query String
for url in URLs returned from indexer do

scoreUrl = 0.0;
for word in query String do

scoreUrl+= (TF/IDF score for word in
url)*(frequency of word in
queryString);
scoreUrl+= 0.5*(Hit List score for word
in url);

end
scoreUrl *= (pageRank for url);
Add scoreUrl to results priority Queue

end

4 Extra-Credit

• We integrated search results for businesses using
Yelp API and also included the current weather de-
tails for different locations using the openweather
API. These results were triggered based on the
search query entered by the user.

• We included pagination to our search results in the
UI along with a cache feature in the search engine
which allowed us to retrieve popular query results
immediately if the query was already searched.

• Content Seen Test within the crawler such that
it does not download the same content multiple
times.

• Dynamic Addition of Worker nodes in the Crawler
• Incremental Crawling supported
• Indexer was implemented using HW3 framework

as well as EMR.

5 Evaluation

5.1 Crawler

The final production ran was deployed on a total of
7 amazon EC2 instances. Six of which were worker

Page 4 of 6



GRS2: A Scalable Distributed Search Engine

nodes and one master node. The worker nodes were of
type "xlarge" which consisted of 16GB of memory. Each
worker node had an additional EBS volume attached
of 100GB each. The master was of type "medium"
which consisted of 4GB of memory and had no extra
storage attached. Despite the worker nodes being of
the same type, the throughput varied across the nodes.
The best performing nodes had an average throughput
of 19 pages crawled per second and reached a max
throughput of 114 pages per second. The worst per-
forming node had an average throughput of 4 pages
per second and recorded a max throughput of 24
pages per second. The average throughput was cal-
culated as a moving average for the entire duration
of the crawl and the max throughput was the highest
recorded throughput within every status update. (Sta-
tus updates occurred every 10 seconds). Total average
throughput versus number of nodes is plotted in Figure
4.

Figure 4: Throughput vs number of nodes

The final run downloaded a total of 1.07 million
webpages over a period of 620 minutes. Each of the
6 nodes was set to download a maximum of 300 000
pages, however, one node crashed immediately leav-
ing us with 5 nodes and another ran into a crawler
trap so downloaded URLs at a slow rate. Luckily, be-
cause of implementing incremental crawling, we were
able to restart some of the nodes without losing much
progress. A summary of the HTTP responses encoun-
tered is shown in figure 5.

5.2 Indexer

The performance evaluation for indexer was carried
out in two different implementations.

Corpus Size Framework Time
50k EMR 30 mins
50k Stormlite 5 hours 30 mins

Table 1: Time comparison between EMR and Stormlite

Based on the table above, we decided to switch to
EMR since the time taken to index using HW3 was
too long. While using EMR on a large corpus size, we

Figure 5: HTTP Response Codes

encountered memory issues due to the intermediate
results being stored on local EC2 instances deployed
in EMR. In order to resolve this issue and tune
our map reduce jobs, we increased the size of our
JVM memory for map and reduce of our instances
from -Xmx2458m, -Xmx4916m to -Xmx2867m and
-Xmx5734m respectively. Additional EBS volumes of
100gb was also added to the 64gb default volume for
each instance. We also found out that Porter Stemmer
was computational very expensive to run and that
became the bottleneck of the system in map phase.
The above changes greatly improved our performance
with a runtime of 25 mins on a corpus of 70k without
stemming which resulted in 500,000 different tokens.

Stormlite: There were several factors to experiment
while running the Indexer on Stormlite framework.
The variation in corpus size, thread pool size in Execu-
torService, number of Map, Reduce Bolts and number
of Workers were observed. The time observed are as
follows:
Corpus Thread M/R Workers Time
Size Pool Bolts
200 1 5 2 5 mins
2k 1 10 4 40 mins
2k 10 10 5 20 mins
20k 10 10 5 3 hours
50k 20 10 10 5 hr 30 mins

Table 2: Time comparison in Stormlite

The time taken for Stormite was more because of cou-
ple fof things. A lot of packets containing each word in
each URL with intermediate scores was sent over the
network to each worker. Porter Stemmer was imple-
mented and storing, retrieving so many results from
BDB turned out to be bottleneck of the system.

5.3 PageRank

We observed that with changing corpus size, the time
taken to the run the entire module differed for the
number of instances used at a time.

Page 5 of 6



GRS2: A Scalable Distributed Search Engine

The times observed were as follows:

Figure 6: pagerank runtimes

It was observed that with increasing corpus size and
having a constant number of instance nodes, the time
taken to run the pagerank emr was increased almost
linearly. Moreover, with increasing instance types from
2-4, the time taken also decreased as shown in the table
above. We could not run on more than 4 instances
(m5.xlarge) due to restrictions/limitations of the AWS
educate account. In addition, for a smaller corpus like
2k, convergence of pagerank values was seen in 4-5
iterations, however for a larger corpus for 140k ormore,
we observed convergence around 15-18 iterations and
therefore decided to run a total of 18 iterations to get
final converged pagerank results for 1 million.

5.3.1 Experiments

We optimized our query time from BerkeleyDB from
each of the workers by restructuring our logic to get
pagerank results. Earlier, the master on receiving a
request for pagerank values for a list of urls from the
search engine, would iterate through the list and ask
the worker(based on hashing) responsible for its value
and combine these results and send a map back to the
search engine. However we optimized it, such that
the master on receiving a request, identifies and sends
an object per worker, which consists of the urls that
a certain worker would hold based on hashing. Each
worker responds with an object consisting of pagerank
results for the url list, which is then combined and
sorted by the master. The master finally sends the top
100 urls back to the search engine. This decreased
the number of connections/requests made per worker
which was sequential earlier and was slowing down
our response time for the query results in the search
engine.

5.4 Search Engine

The average search time obtained for a query is 1.8
seconds (averaged over 25 queries)

Figure 7: Search times for 25 queries

Figure 8: Search results with integrated results yelp business
API

6 Conclusion and Lessons
Learnt

Through this project, we implemented the basic moving
parts of a full distributed search engine. We observed
that fully distributing each component increases the
throughput of data traffic / data crawled and also re-
duces the time required to answer the search query to
the user. The results were satisfactory and there is a
lot of room for improvement. Some of the areas for
improvement are:
• Index more data
• Employ search engine optimization techniques to

increase the quality of results
• Research techniques to understand the context of

the query and provide relevant results
This was an awesome project and challenged us in
many ways but we’re grateful for the opportunity to
have been able to carry it out.

7 References

NAJORK, M. AND HEYDON, A. 2001. On high-
performance Web crawling. SR, Tech A68 Compaq Re-
search Center, Palo Alto, CA.
S. Brin and L. Page. “The Anatomy of a LargeScale

Hypertextual Search Engine”. Stanford University. Com-
puter Science Department, 1998

Page 6 of 6


